МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ИНСТИТУТ СТРАТЕГИИ РАЗВИТИЯ ОБРАЗОВАНИЯ РОССИЙСКОЙ АКАДЕМИИ ОБРАЗОВАНИЯ

Основные подходы к оценке естественнонаучной грамотности учащихся основной школы

Введение

Результаты 15-летних российских школьников в международном исследовании PISA-2015 [2] свидетельствуют о в среднем невысоком уровне естественнонаучной грамотности (далее – ЕНГ) учащихся. Между тем ЕНГ определяется как основная цель школьного естественнонаучного образования в большинстве развитых стран мира [например, 7, 5] и отражает способность человека применять естественнонаучные знания и умения в реальных жизненных ситуациях, в том числе в случаях обсуждения общественно значимых вопросов, связанных с практическими применениями достижений естественных наук. Но даже больше, чем невысокое место России в рейтинге стран, настораживает тот факт, что эти результаты не демонстрируют никакого прогресса на протяжении всех циклов исследования PISA, начиная с 2000 года [3], в отличие, например, от математической и читательской грамотности. Таким образом, перед российским образованием стоит задача повышения уровня ЕНГ российских учащихся, а значит, и соответствующей модернизации содержания и методов обучения в области естественнонаучного образования. Необходимость решения этой задачи вытекает также из майских (2018 г.) указов Президента Российской Федерации, согласно которым наша страна к 2024 г. должна войти в десятку ведущих стран мира, лидирующих по качеству общего образования.

Проект систематического мониторинга формирования ЕНГ, как одного из важнейших видов функциональной грамотности, должен способствовать повышению уровня ЕНГ российских школьников, а значит, и будущего взрослого населения страны. Первый этап проекта, начавшийся в конце 2018 г., посвящен разработке и апробации заданий по оцениванию ЕНГ для 5 и 7 классов. Выбор этих возрастных когорт связан с тем обстоятельством, что 5классники 2019/2020 учебного года в большинстве своем в 2024 году станут 15-летними учащимися, представительная выборка которых будет участвовать в PISA-2024. В свою очередь, нынешние 7-классники дадут выборку для участия в PISA-2021. При этом в 2024 году именно ЕНГ будет приоритетным направлением этого международного исследования, поэтому результаты PISA-2024 смогут показать, насколько эффективной оказалась целенаправленная программа по формированию ЕНГ, ядром которой должен стать данный проект.

Задача проекта состоит также в том, что разработанные задания должны предоставить образцы и создать основу для банка учебных заданий практикоориентированного характера, которые будут широко использоваться в учебном процессе как в качестве оценивающих, так и формирующих заданий. Это должно привести тому, что практико-ориентированные, И компетентностные задания будут в гораздо большей степени представлены в УМК естественнонаучных предметов материалах измерительных И Государственной итоговой аттестации.

Общая характеристика естественнонаучной грамотности и заданий по ее оцениванию

Характер заданий для оценивания ЕНГ российских учащихся в рамках национального мониторинга основывается на материалах международного исследования PISA. Эти материалы включают в себя собственно концепцию ЕНГ, модель заданий по ее оцениванию и образцы таких заданий. Согласно определению, используемому в PISA, естественнонаучная грамотность — это

способность человека занимать активную гражданскую позицию по общественно значимым вопросам, связанным с естественными науками, и его готовность интересоваться естественнонаучными идеями.

Естественнонаучно грамотный человек стремится участвовать в аргументированном обсуждении проблем, относящихся к естественным наукам и технологиям, что требует от него следующих компетентностей:

- научно объяснять явления;
- понимать основные особенности естественнонаучного исследования;
- интерпретировать данные и использовать научные доказательства для получения выводов.

Из приведенного выше определения вытекают требования к заданиям по оцениванию ЕНГ. Они должны быть направлены на проверку перечисленных выше компетентностей и при этом основываться на реальных жизненных ситуациях. Именно такие задания, объединенные в тематические блоки, составляют измерительный инструментарий PISA. Типичный блок заданий включает в себя описание реальной ситуации, представленное, как правило, в проблемном ключе, и ряд вопросов-заданий, связанных с этой ситуацией [1]. При этом каждое из заданий классифицируется по следующим параметрам:

- компетентность, на оценивание которой направлено задание;
- тип естественнонаучного знания, затрагиваемый в задании;
- контекст;
- познавательный уровень (или степень трудности) задания.

Ниже смысл каждого из этих параметров раскрывается подробнее.

Компетенции и умения

Каждая из трех основных компетенций, составляющих ЕНГ, включает в себя набор конкретных умений, на проверку которых может быть непосредственно направлено задание. В таблице 1 приводятся эти умения,

раскрывающие содержание каждой из основных компетенций, и краткая характеристика учебного задания, с помощью которого можно формировать или оценивать соответствующее умение.

Таблица 1. Умения, раскрывающие содержание ЕНГ, и характеристика заданий по формированию/оценке этих умений

	Оцениваемые компетенции, умения	Характеристика учебного задания, направленного на формирование/оценку умения		
1	Компетенция: научное объяснение явлений			
1.1	Применить соответствующие естественнонаучные знания для объяснения явления	Предлагается описание достаточно стандартной ситуации, для объяснения которой можно напрямую использовать программный материал.		
1.2	Распознавать, использовать и создавать объяснительные модели и представления	Предлагается описание нестандартной ситуации, для которой ученик не имеет готового объяснения. Для получения объяснения она должна быть преобразована (в явном виде или мысленно) или в типовую известную модель или в модель, в которой ясно прослеживаются нужные взаимосвязи. Возможна обратная задача: по представленной модели узнать и описать явление.		
1.3	Делать и научно обосновывать прогнозы о протекании процесса или явления	Предлагается на основе понимания механизма (или причин) явления или процесса обосновать дальнейшее развитие событий.		
1.4	Объяснять принцип действия технического устройства или технологии	Предлагается объяснить, на каких научных знаниях основана работа описанного технического устройства или технологии.		
2	Компетенция: понимание особе	енностей естественнонаучного исследования		
2.1	Распознавать и формулировать цель данного исследования	По краткому описанию хода исследования или действий исследователей предлагается четко сформулировать его цель.		
2.2	Предлагать или оценивать способ научного исследования данного вопроса	По описанию проблемы предлагается кратко сформулировать или оценить идею исследования, направленного на ее решение, и/или описать основные этапы такого исследования.		

2.3	Выдвигать объяснительные гипотезы и предлагать способы их проверки	Предлагается не просто сформулировать гипотезы, объясняющие описанное явление, но и обязательно предложить возможные способы их проверки.	
		Набор гипотез может предлагаться в самом задании, тогда учащийся должен предложить только способы проверки.	
2.4	Описывать и оценивать способы, которые используют учёные, чтобы обеспечить надёжность данных и достоверность объяснений	Предлагается охарактеризовать назначение того или иного элемента исследования, повышающего надежность результата (контрольная группа, контрольный образец, большая статистика и др.). Или: предлагается выбрать более надежную стратегию исследования вопроса.	
3	Компетенция: интерпретация данных и использование научных доказательств для получения выводов		
3.1	Анализировать, интерпретировать данные и делать соответствующие выводы	Предлагается формулировать выводы на основе интерпретации данных, представленных в различных формах: графики, таблицы, диаграммы, фотографии, географические карты, словесный текст. Данные могут быть представлены и в сочетании форм.	
3.2	Преобразовывать одну форму представления данных в другую	Предлагается преобразовать одну форму представления научной информации в другую, например: словесную в схематический рисунок, табличную форму в график или диаграмму и т.д.	
3.3	Распознавать допущения, доказательства и рассуждения в научных текстах	Предлагается выявлять и формулировать допущения, на которых строится то или иное научное рассуждение, а также характеризовать сами типы научного текста: доказательство, рассуждение, допущение.	
3.4	Оценивать с научной точки зрения аргументы и доказательства из различных источников	Предлагается оценить с научной точки зрения корректность и убедительность утверждений, содержащихся в различных источниках, например, научно-популярных текстах, сообщениях СМИ, высказываниях людей.	

Данную таблицу можно рассматривать в качестве кодификатора, который используется для разработки и оценки выполнения заданий по ЕНГ.

Типы научного знания

Каждая из компетентностей, оцениваемых в задании, может демонстрироваться на материале научного знания следующих типов:

- Содержательное знание, знание научного содержания, относящегося к следующим областям: «Физические системы», «Живые системы» и «Науки о Земле и Вселенной».
- Процедурное знание, знание разнообразных методов, используемых для получения научного знания, а также знание стандартных исследовательских процедур.

Содержательные области можно формально соотнести с предметными знаниями. Так, «Физические системы» — это преимущественно материал физики и химии, «Живые системы» — биология, «Науки о Земле и Вселенной» — география, геология, астрономия. Однако с точки зрения содержания задания по ЕНГ, используемые в PISA, часто имеют межпредметный характер.

Что касается *процедурного знания*, то оно в равной мере относится ко всем естественнонаучным предметам, что, в первую очередь, и позволяет объединять их в одну группу и говорить именно о *естественнонаучной*, а не о какой-то узко предметной, грамотности. В нашей практике комплекс знаний, умений, компетентностей, относящихся к типу процедурного знания, принято объединять под рубрикой «Методы научного познания».

Контексты

Контекстом можно назвать тематическую область, к которой относится описанная в задании проблемная ситуация. Например, в PISA эти ситуации группируются по следующим контекстам:

- здоровье;
- природные ресурсы;

- окружающая среда;
- опасности и риски;
- связь науки и технологий.

При этом каждая из ситуаций может рассматриваться на одном из трех уровней: личностном (связанном с самим учащимся, его семьей, друзьями), местном/национальном (связанном с проблемами данной местности или страны) и глобальном (когда рассматриваются явления, происходящие в различных уголках мира). Посмотрим, например, как выглядит на разных уровнях ситуация, относящаяся к контексту «связь науки и технологий» и содержательному типу знания «Физические системы». На личностном уровне она может быть связана с работой бытовых электрических приборов. На местном/национальном уровне — с работой ветряного электрогенератора, используемого для обеспечения энергией небольшого поселения. На глобальном уровне — с использованием в целом возобновляемых и не возобновляемых источников энергии.

Контекст – очень важное условие того, чтобы данное учебное задание можно было считать заданием на естественнонаучную грамотность. Ведь ЕНГ (как и другие виды функциональной грамотности) как раз и предполагает способность применить знания в реальной ситуации, а не в рафинированных абстрактных условиях. На последнее рассчитаны задания (задачи) другого типа.

Именно наличие контекста, в который помещена проблемная ситуация, дает ответ на вопрос, *зачем* может понадобиться то или иное естественнонаучное знание. Задания (задачи) вне контекста оставляют этот вопрос открытым, что делает для многих учеников бессмысленным приложение усилий к таким задачам.

Познавательные уровни

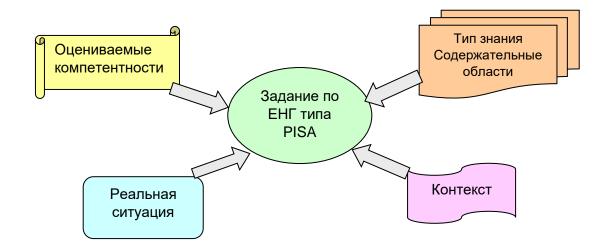
Для заданий по ЕНГ в PISA определяются уровни познавательных действий, которые должен выполнить ученик для выполнения данного задания. Трудность любого задания — это сочетание его собственной интеллектуальной сложности (т.е. сложности требуемых мыслительных процедур) и объема знаний и умений, необходимых для его выполнения. Выделяются следующие познавательные уровни:

• Низкий

Выполнять одношаговую процедуру, например, распознавать факты, термины, принципы или понятия, или найти единственную точку, содержащую информацию, на графике или в таблице.

• Средний

Использовать и применять понятийное знание для описания или объяснение явлений, выбирать соответствующие процедуры, предполагающие два шага или более, интерпретировать или использовать простые наборы данных в виде таблиц или графиков.


• Высокий

Анализировать сложную информацию или данные, обобщать или оценивать доказательства, обосновывать, формулировать выводы, учитывая разные источники информации, разрабатывать план или последовательность шагов, ведущих к решению проблемы.

Определение познавательного уровня, или степени трудности, задания в соответствии с этими критериями – порой само по себе нелегкая задача. Чаще всего мы оцениваем эту трудность интуитивно, «на глазок», или она определяется эмпирически, в зависимости от того, какой процент ребят на той или иной выборке выполняет данное задание.

Модель заданий по естественнонаучной грамотности в формате PISA

В наиболее общем виде модель задания по оценке ЕНГ можно представить в виде следующей схемы:

В этой модели в явном виде не фигурирует такой параметр, как «познавательные уровни». Однако неявно он присутствует в каждой из остальных характеристик. Ведь трудность задания может зависеть от сложности описания самой реальной ситуации, необходимого объема содержательного знания того, уровне быть И на каком должна продемонстрирована компетентность. Например, та или иная предлагается дать научное объяснение какого-то явления, то, во-первых, само явление может быть проще или сложнее, а во-вторых, объяснять его можно поверхностно, на качественном уровне или, например, с использованием математического аппарата.

Особенности использования модели исследования PISA в заданиях для учащихся 5 и 7 классов

В исследовании PISA оценивается ЕНГ 15-летних учащихся. В России большая часть таких учащихся — это 9-классники и значительно меньшая часть — 10-классники и еще меньшая — учащиеся учреждений СПО. Таким образом, модель заданий по ЕНГ, используемых в PISA, адаптирована именно к этой возрастной группе учащихся и освоенным ими учебным программам. Очевидно, что задача мониторинга ЕНГ на уровне 5 и 7 классов предполагает свои акценты как в самой концепции ЕНГ, так и в характере измерительных материалов по ее оцениванию.

Так, например, применительно к младшему подростковому возрасту понимание ЕНГ в меньшей степени адресуется к гражданской позиции и готовности к аргументированному обсуждению общественно значимых естественнонаучных проблем, но зато в большей степени — к природной любознательности и исследовательским склонностям учащихся этой возрастной группы. Вместе с тем сам набор компетенций, определяющих ЕНГ, остается неизменным:

- научное объяснение явлений;
- понимание основных особенностей естественнонаучного исследования:
- интерпретация данных и использование научных доказательств для получения выводов.

В уточнениях нуждается смысл параметров, которыми описываются задания по оцениванию ЕНГ. Особенно это затрагивает такие параметры, как тип естественнонаучного знания, содержательные области и контекст.

Типы научного знания и содержательные области

В целом два основных типа научного знания — содержательное знание и процедурное знание — сохраняют свое значение и для заданий по ЕНГ, предлагаемых в 5 и 7 классах. Однако содержательные области, на которые опираются измерительные материалы, должны отражать содержание соответствующих образовательных программ и возможного опыта учащихся.

5 класс

концу 5 класса большинство российских школьников ИЗ естественнонаучных программ осваивали курс начальной «Окружающий мир» и в 5 классе – биологию и географию. При этом естественнонаучная часть программы «Окружающий мир» примерно на 90% состоит из биологических и географических-астрономических знаний, а сам объем этой части программы крайне небольшой (в сравнении с другими странами) и составляет примерно 40 час/год [3]. Стандартный курс географии

для 5 класса также нельзя считать полностью естественнонаучным, поскольку значительное место в нем занимает история географических открытий, имеющая преимущественно описательный характер. Вместе с тем курс географии 5 класса включает определенный объем астрономических знаний, в основном о Солнечной системе. Таким образом, если опираться только на содержание стандартной образовательной программы, то возможности для разработки заданий по ЕНГ крайне узки. Они примерно на 80% могут использовать биологический и астрономический материал и лишь в ничтожной мере – физические и тем более химические знания, а также знания по физической географии. Напомним, что в PISA-2018 задания по ЕНГ были областям распределены ПО содержательным следующим «Физические системы» — 33%, «Живые системы» — 41%, «Науки о Земле и Вселенной» -26%.

Однако разработчики заданий для 5 класса решили опереться и на другой, внешкольный, ресурс. Так, результаты международного исследования TIMSS-2015 показывают, что несмотря на отсутствие в содержании предмета огромных пластов естественнонаучного «Окружающий мир» выпускники российской начальной школы (4 класс) занимают высокое место в рейтинге стран по естествознанию [4]. При этом они успешно выполняют задания, относящиеся к различным вопросам физики, химии, а также по некоторым не входящим в программу вопросам биологии, например, по теме Источником знаний «наследственность». ЭТИХ очевидно является внешкольный опыт. Это делает возможным и даже необходимым при разработке заданий по ЕНГ опираться на все три содержательные области, причем примерно в том же соотношении, как это сделано в PISA (см. выше). При этом в определении, например, возможного уровня физико-химических знаний 5-классников целесообразно ориентироваться на требования в области физики и химии, предъявляемые в исследовании TIMSS для 4 класса (с учетом взросления на один год). Этот подход соответствует также и тем тенденциям в школьном естественнонаучном образовании, которых придерживается

большинство стран. Так, в «Анализе зарубежных стандартов естественнонаучного образования» [6] были рассмотрены стандарты 10 стран, находящихся к моменту проведения этого анализа (2009-2010 гг.) в верхней части рейтинга по результатам PISA и TIMSS. Обнаружилось, что в этих странах в курсе Science (Естествознание) начальной школы (1-6 классы) большую часть составляют физические науки, то есть физика и химия (в среднем по этим странам чуть более 40%), далее биология — чуть менее 30%, еще меньше науки о Земле и Космосе (география и астрономия) — примерно 10%, остальное — междисциплинарное содержание.

Другая особенность состоит в том, что поскольку опора в виде естественнонаучных знаний в 5 классе пока еще не велика, то задания могут в большей степени ориентироваться на процедурный тип знания и оценивание таких компетентностей, как понимание особенностей естественнонаучного исследования и интерпретация данных для получения выводов (разумеется, с Так, возрастных возможностей). задания, направленные учетом формирование компетентности, оценивание связанной И c естественнонаучным исследованием, составляют около 30% от общего числа заданий.

В заданиях, относящихся к процедурному типу знаний, 5-классникам, например, предлагается:

объяснить, зачем нужно многократное повторение эксперимента со спуском «ватрушки» со снежной горки (и некоторых других экспериментов в других заданиях);

предположить, что можно узнать с помощью такого метода, как кольцевание птиц;

выбрать из четырех предлагаемых вариантов оптимальный способ сравнения двух магнитов, сделанных из разных материалов.

7 класс

В 7 классе российской школы в дополнение к биологии и географии из изучается физика. естественнонаучных предметов Поэтому, мониторинг формирования ЕНГ в конце 7 класса, можно в значительной мере использовать материал содержательной области «Физические системы», опираясь на темы курса физики 7 класса. Вместе с тем отсутствие в 7 классе курса химии не означает, что такие представления, как химическая реакция, химические превращения и молекулярное строение веществ, не могут использоваться в измерительных материалах. На том или ином уровне эти представления затрагиваются в других естественнонаучных предметах, не говоря о том, что учащиеся, как правило, встречаются с ними в жизни. Таким образом, структура содержательного знания при мониторинге ЕНГ в 7 классе может быть примерно такой же, как в исследовании PISA для 15-летних учащихся.

Соотношение содержательного и процедурного типов знания в заданиях для 7 класса также может быть близким к PISA, то есть составлять примерно 50%: 50%. При этом в 7 классе появляется больше возможностей для разработки заданий процедурного типа, поскольку именно при изучении физики в явном виде ставится задача формирования экспериментальных исследовательских умений. Задания, связанные с особенностями естественнонаучного исследования, составляют здесь более 40% от общего числа заданий для 7 класса.

В заданиях, относящихся к процедурному типу знаний, 7-классникам, например, предлагается:

объяснить выбор способа, с помощью которого можно определить, у какого из лыжников лучше скользят лыжи;

определить цель описанного эксперимента, проведенного с листом растения;

сделать вывод из описанного эксперимента с освещением настольной лампой объекта, расположенного двумя разными способами, и связать этот вывод с наступлением лета и зимы на Земле.

Контексты

Перечень контекстов, представленных в заданиях PISA, нуждается в некоторой корректировке и/или комментариях, учитывающих возрастные особенности, интересы и жизненный опыт учащихся 5 и 7 классов.

5 класс

Здесь актуальные контексты, к которым относится описываемая в задании ситуация, могут в меньшей степени отражать прагматический смысл естественнонаучного знания, зато больше учитывать его мировоззренческое познавательное значение. Таким образом, для 5 класса целесообразно ввести контекст, который можно условно назвать «научная любознательность». Вместе с тем такая проблематика, как здоровье, окружающая среда, опасности и риски, наука и технологии, сохраняют свое значение и для данного возраста.

Как уже говорилось, контекст задания может дифференцироваться по трем уровням: личному, местному и глобальному. В заданиях PISA-2018 соотношение между этими уровнями было следующее: глобальный – 30%, местный -60%, личный -10%. Очевидно, что для 5 класса доля заданий с личным контекстом должна существенно увеличиться разработанных заданий она составляет около 50%. Это, например, сюжеты с обустройством катанием на снежной горке, домашнего экспериментами с собственной собакой по выяснению того, различает ли она некоторые числа и цвета.

7 класс

Для учащихся 7 класса также актуален контекст «научная любознательность», иначе говоря, не все задания должны затрагивать проблемы здоровья, ресурсов, окружающей среды и рисков. Однако доля заданий, связанных с прагматическими контекстами может увеличиться по сравнению с 5 классом.

Доля заданий с местным и глобальным контекстами возрастает по отношению к 5 классу, но личный контекст все же больше представлен, чем в

PISA, и составляет около 40%. Здесь это, например, сюжеты, связанные со свойствами спортивных мячей или катанием на лыжах.

Формат заданий

В целом в заданиях для 5 и 7 классов используется традиционный набор форматов, который во многом повторяет форматы PISA (см. таблицу 2 ниже), за исключением так называемых интерактивных заданий, разработка которых требует очень серьезного технологического обеспечения.

Таблица 2. Набор форматов заданий, используемых в мониторинге ЕНГ

Формат заданий	PISA-2018	Монитор	Мониторинг ЕНГ	
		5 класс	7 класс	
С выбором одного				
правильного ответа,				
включая	30%	49%	42%	
перетаскивание				
объектов				
С выбором нескольких				
правильных ответов	40%	12%	6%	
(множественный выбор)				
С развернутым ответом	27%	39%	52%	
Интерактивные задания	3%			
Итого	100%	100%	100%	

Однако процентное соотношение форматов отличается. Поскольку задачи национального мониторинга, особенно на такой ранней стадии, как 5 и 7 классы, неразрывно связаны не столько с оцениваем, сколько с формированием ЕНГ, то и сами задания должны демонстрировать образцы, которые можно продуктивно использовать в текущем образовательном процессе. Это, в частности, означает, что должно увеличиться количество заданий, требующих развернутого ответа (см. таблицу 2). Такие задания предполагают построение рассуждений, которые на уроке могут иметь форму как письменного, так и устного высказывания. В свою очередь, такие

высказывания становятся предметом обсуждения и уточнений со стороны товарищей и учителя, тем самым способствуя не только лучшему пониманию проблемы, но и формированию речевых умений.

Естественнонаучная грамотность и ФГОС основного общего образования

Понятие ЕНГ, как и задача формирования этого вида функциональной грамотности, абсолютно согласуются с требованиями к образовательным результатам, определенным в ФГОС ООО. Чтобы убедиться в этом, достаточно сравнить набор основных компетенций, определяющих ЕНГ, с требованиями ФГОС ООО к ряду метапредметных и предметных образовательных результатов (см. таблицу 3).

Таблица 3. Компетенции ЕНГ и требования ФГОС ООО к образовательным результатам

	Компетенции ЕНГ	Требования ФГОС ООО к
		образовательным результатам
1	Научное объяснение явлений, включая:	Создание, применение и
	применение естественнонаучных знаний	преобразование знаков и символов,
	для объяснения явлений;	моделей и схем для решения учебных и
	использование и создание	познавательных задач
	объяснительных моделей;	(метапредметный результат
	и др.	образования).
	-	
2	Понимание основных особенностей	Овладение научным подходом к
	естественнонаучного исследования,	решению различных задач; овладение
	включая:	умениями формулировать гипотезы
	распознавание и формулирование цели	(общие предметные результаты для
	данного исследования;	предметной области
	выдвижение объяснительных гипотез и	«Естественнонаучные предметы»).
	предложение способов их проверки;	

предложение или оценка способов	Приобретение опыта применения
научного исследования данного	научных методов познания
вопроса.	(предметный результат изучения
	физики).
	Приобретение опыта использования
	различных методов изучения веществ
	(предметный результат изучения
	химии).
	Приобретение опыта использования
	методов биологической
	науки (предметный результат изучения
	биологии).
Интерпретация данных и использование	Определение понятий, создание
научных доказательств для получения	обобщений, установление аналогий,
выводов, включая:	классификация, установление
анализ, интерпретацию данных и	причинно-следственных связей,
получение соответствующих выводов;	построение логических рассуждений,
преобразование одной формы	умозаключений (индуктивных,
представления данных в другую;	дедуктивных и по аналогии) и
и др.	получение выводов (метапредметный
	результат образования).
	Оценка результатов экспериментов,
	представление научно обоснованных
	аргументов своих действий (общие
	предметные результаты для
	предметной области
	«Естественнонаучные предметы»).
	научного исследования данного вопроса. Интерпретация данных и использование научных доказательств для получения выводов, включая: анализ, интерпретацию данных и получение соответствующих выводов; преобразование одной формы представления данных в другую;

Сравнение показывает, что компетентности, составляющие ЕНГ, и требования стандарта вполне согласуются друг с другом, однако в ФГОС для определения соответствующих умений часто используются другие слова, но

главное, эти умения «рассеяны» по группам метапредметных и предметных результатов, не образуя в стандарте единого блока, показывающего общие цели и планируемые результаты изучения всех естественнонаучных предметов. Это и в целом отражает современную ситуацию в российском школьном естественнонаучном образовании, характеризуемом разрозненностью учебных предметов и непониманием общих задач. В этом, по-видимому, состоит одна из причин отсутствия прогресса российских учащихся в PISA по направлению «естественнонаучная грамотность».

Заключение

Систематический мониторинг формирования ЕНГ в российской школе, который планируется проводить на протяжении ряда лет в рамках данного проекта, будет лишен смысла, если в этот же период не будут предприняты усилия, направленные собственно на формирование ЕНГ. Эти усилия предполагают целый комплекс мер, которые в случае их реализации будут означать существенную модернизацию подходов ШКОЛЬНОМ образовании. естественнонаучном Среди ЭТИХ мер усиление естественнонаучной составляющей в курсе «Окружающий мир» начальной школы, и возвращение полноценного естественнонаучного образования в 5-6 классы, и согласование общих задач естественнонаучного образования в преподавании отдельных естественнонаучных предметов. Разумеется, это подразумевает учебно-методических изменения В комплексах естественнонаучных предметов и методах их преподавания. Естественные информационную особенно современную эпоху, преподаваться не как огромный набор сведений, предназначенный для запоминания, а как действенный инструмент познания мира. В этом инструменте научные знания, методы исследования и заинтересованная позиция учащегося имеют равное значение, а это означает, что ориентация на чрезмерный объем знаний, якобы продиктованный программой, будет неизбежно ущемлять две другие, ничуть не менее важные составляющие.

С этой точки зрения достаточно большой массив новых учебных заданий, направленных на формирование и оценивание ЕНГ, может показать меняться направление, В котором должны содержание методика образования, естественнонаучного ориентированного на достижение современных требований в образовательным результатам области естествознания.

Список литературы

- 1. Международная оценка образовательных достижений учащихся (PISA). Примеры заданий по естествознанию // Центр оценки качества образования ИСМО РАО. 2007. 115 с.
- 2. Основные результаты международного исследования PISA-2015 // Центр оценки качества образования ИСРО РАО, 2016. [Электронный ресурс]. www.centeroko.ru (дата обращения: 11.06.2019).
- Пентин А.Ю., Ковалева Г.С., Давыдова Е.И., Смирнова Е.С. Состояние естественнонаучного образования в российской школе по результатам международных исследований TIMSS и PISA // Вопросы образования. 2018. №1. С. 79-109.
- 4. Результаты международного исследования TIMSS 2015, 4 класс (краткий отчет на русском языке). / Центр оценки качества образования ИСРО РАО, 2016. [Электронный ресурс]. www.centeroko.ru (дата обращения: 11.06.2019).
- 5. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas / Committee on Conceptual Framework for New K-12 Science Education Standards. National Research Council. Washington, DC: The National Academies Press. 2012. 399 c.
- 6. International science benchmarking report. Taking the lead in science education: forging Next-Generation Science Standards. / Achieve. 2010. 83 c.
- 7. Science syllabus. Primary. 2014. Ministry of Education, Singapore. 59 с. *Материалы подготовлены А.Ю. Пентиным, Е.А. Никишовой, Г.Г. Никифоровым*